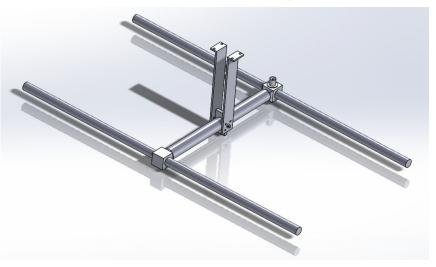
DASL UAV Antenna Gimbal

Team D1: Kalli Albright Kaitlyn Barr Dustin Branges Daniel Johnson


March 13th, 2018

Project Description: Review

- Dynamic and Active Systems Lab (DASL) at Northern Arizona University (NAU)
- Unmanned Aerial Vehicle to track wildlife
 - Very High Frequency (VHF) Telemetry
 - Telonics RA-23K Antenna
- Create antenna gimbal to more efficiently collect data
- Goal: make the tracking of wildlife less invasive and easier than before

Project Description: Previous Designs

Initial Design

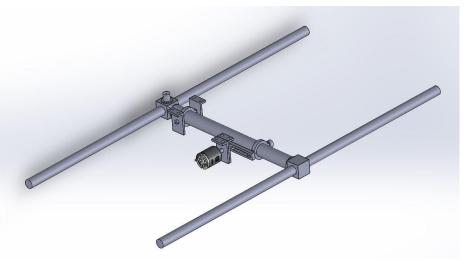
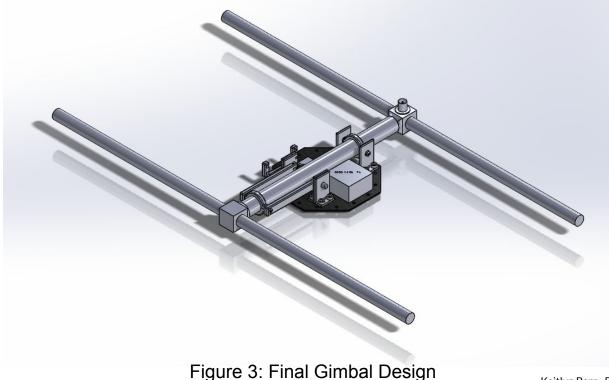



Figure 2: Second Iteration Gimbal Design

Figure 1: Initial Gimbal Design

Project Description: Current Manufactured Design

Project Description: Current Manufactured Design

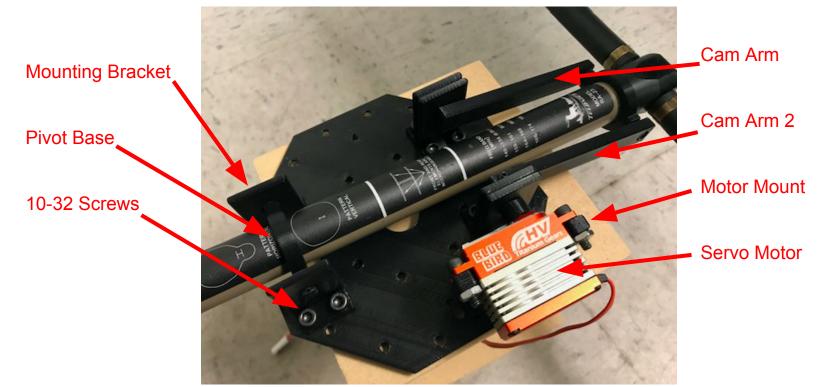
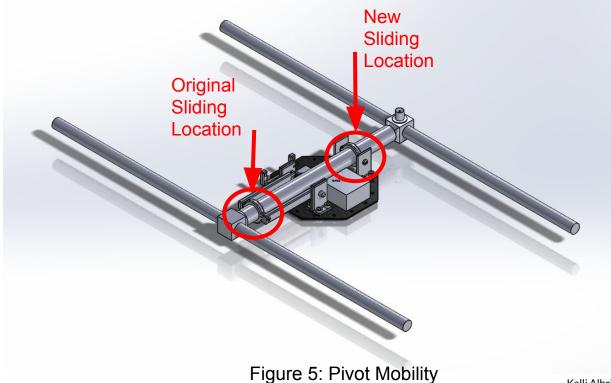


Figure 4: Final Gimbal Design

Updates: Summary


- Motor
- Pivot Base
- Mounting Brackets
- Dual Cam Arm

Updates: Motor

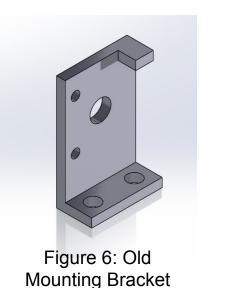
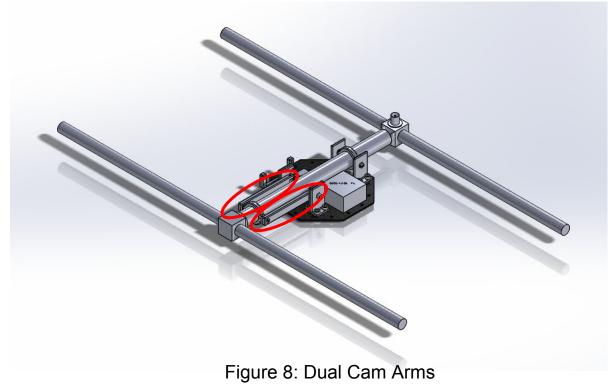
Table 1: Servo Comparison

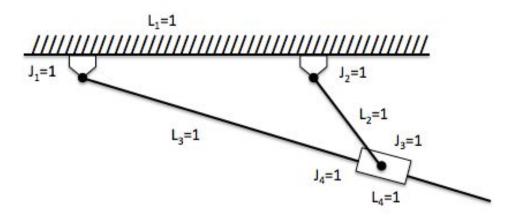
	Old Servo	New Servo						
Motor Name	Hitec HS-81	Bluebird						
Dimensions (in.)	1.17 x 0.47 x 1.16	1.59 x 0.79 x 1.54						
Weight (lb.)	0.04	0.18						
Torque at 6V (in*lb)	2.34	25.2						
Picture								

Updates: Pivot Base Mobility

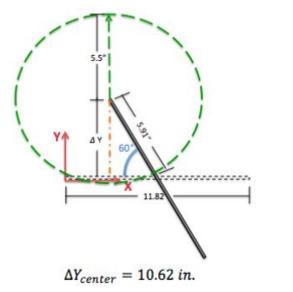
Updates: Mounting Brackets

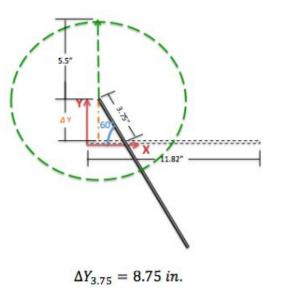
- Deleted stopper
- Deleted mounting holes for old motor
- Added fillets

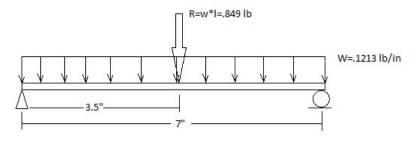



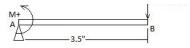

Figure 7: New Mounting Bracket

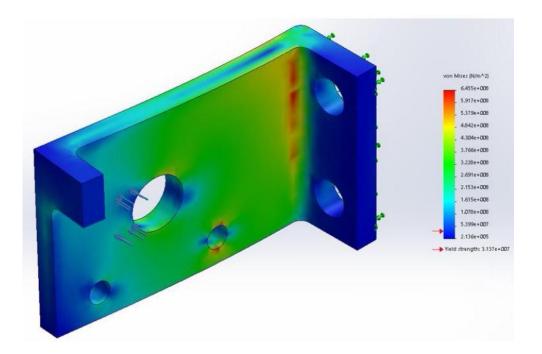
Updates: Dual Cam Arms


Updates: Analytical Analysis - Linkage Mobility


- Assuming all linkages are rigid bodies
- Gruebler's Equation
 - M = 3(L-1) 2J
 - M: mobility or degrees of freedom
- Result
 - M=1 : mechanism
 - Needs single input motion


Updates: Analytical Analysis - Antenna Rotation Point


- High antenna deflection
- Must avoid interference with rotors
- Changing the rotation location changes the safe height difference


Updates: Analytical Analysis - Motor Torque

- Used sum of forces for first diagram
- Solved for reactions
- Applied reaction force at B on diagram 2
- Used sum of moments at A to solve for minimum torque
- Minimum required torque is 1.486 in-lbs (approximately 1.5 in-lbs)

Updates: Analytical Analysis - Von Mises Stress

- Based on:
 - 572.9N caused by impact
 - 3 foot drop height
 - Stratasys ABS-M30 properties
 - Entire force localized to a small area on a single part
 - "Worst case scenario"
- Max stress: 6.455*10⁸ N/m²
- Material ultimate tensile strength: 3.206*10⁷ N/m²

Moving Forward: Manufacturing Plans

• Done

- Printed all parts in ABS on Fortus 250MC
- Gather fasteners from Machine Shop
- Gather Arduino, Servo, and other accessories from Amazon
- Assemble all parts

• To Do

- Print replacement parts
- Calibrate angle

Moving Forward: Testing

Test	Procedure	Requirement
Size	Measure surface area of system with ruler	≤ 15 in.²
Weight	Weigh all components of the system with scale	≤ 0.5 lbs.
Angle	Measure maximum angle with protractor	≥45°
Modes	Note the number of user modes	≥2
Communication	Note the rate of serial communication	= 9600 Baud
Power Input	Measure power input with multimeter	≤ 5 V
Cost	Calculate total cost	≤ \$500
Linkages	Count number of linkages	≤ 4
Installation Time	Using stop watch, time how long it takes to fully assemble	≤ 1 hour

Moving Forward: Budget Changes

- Changes
 - Added testing materials ~\$15
 - Motor changed \$14.50 -> \$66.89
- Initial budget- \$125.89
- Final budget- \$193.89

Vendor	Purpose	Part #	Part Name	Part No.	Dimensions	Material	Cost (\$/part)	Quantity	Total (\$)	
		11	Blue Bird 7.4V Servo	BMS-35A	N/A	N/A	66.89	1	66.89	Y
Amazon	Parts & Material	12	Aideepen L298N DC Drive Controller	100752	1.69" x 1.69" x 1"	N/A	6.99	1	6.99	Y
		13	Velcro	N/A	N/A	N/A	2.98	1	4.29	Y
	Fabrication	tion 14 Acetone		N/A	N/A N/A		5.95 1		5.95	Y
								Total (\$)	84.12	
/endor	Purpose	Part #	Part Name	Part No.	Dimensions	Material	Cost (\$/part)	Quantity	Total (\$)	
1,000,000		24	Mock Antenna	RA 23-K	12"	Anodized Aluminur	n 0	1	0	Y
Home Depot	Testing	25	Testing Stand Plates	N/A	5" x 5"	MDF	3.83	1	3.83	Y
		26	Testing Stand Screws	N/A		MDF	2.49	2	4.98	Y
Michaels		27	Testing Stand Blocks	N/A	4"	MDF	5.49	1	5.49	Y
								Total (\$)	14.3	

Moving Forward: Budget

Budget Available	+\$500.00
Final Design Expenses	-\$193.89
Initial Design Expenses	-\$14.50
Anticipated Expenses	-\$0.00
Resulting Balance	+\$291.61

Moving Forward: Gantt Chart

Task	Leading Member	Week 10			Week 11			Week 12			Week 13			Week 14			Week 15		
		3/26	3/28	3/30	4/2	4/4	4/6	4/9	4/11	4/13	4/16	4/18	4/20	4/23	4/25	4/27	4/30	5/2	5/4
Peer Evaluation	All																		
Website Check	Dustin Branges	3 h	3 hours																
Continue Build Work	All	Finish Build- 10 hours																	
Poster Work Draft	Kalli Albright	10 hours																	
Operations Manual Draft	Daniel Johnson	7 hours																	
Final Product Testing Proof	Kalli Albright						15 h	ours											
Poster Work	Kaitlyn Barr				15 hours														
Operations Manual	Dustin Branges				15 hours														
Final CAD Package	Daniel Johnson												20 hours						
Final Report	Kaitlyn Barr										20 hours								
Website Check	Dustin Branges											3				3 h	ours		
Peer Evaluation	All																		

Hardware Review 2: Working Model

Operations:

- 2 sweeps
- Hold angle
- Sweep

Hardware Review 2: Subsystems

• Frame

- 3D printed parts original
- Fasteners existing
- Servo Motor Blue Bird BMS35A existing

• Software

- Code original
- Arduino & accessories- existing

Hardware Review 2: How it Works

- 1. User inputs desired mode
- 2. Arduino translates code to motor
- 3. Motor rotates cam arm to corresponding angle
- 4. Cam arm supports antenna
- 5. System simultaneously holds opposite end of antenna

Questions?